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Abstract

GPT-2 and BERT demonstrate the effectiveness of using pre-
trained language models (LMs) on various natural language
processing tasks. However, LM fine-tuning often suffers from
catastrophic forgetting when applied to resource-rich tasks.
In this work, we introduce a concerted training framework
(CTNMT) that is the key to integrate the pre-trained LMs
to neural machine translation (NMT). Our proposed CTNMT
consists of three techniques: a) asymptotic distillation to en-
sure that the NMT model can retain the previous pre-trained
knowledge; b) a dynamic switching gate to avoid catastrophic
forgetting of pre-trained knowledge; and c) a strategy to ad-
just the learning paces according to a scheduled policy. Our
experiments in machine translation show CTNMT gains of up
to 3 BLEU score on the WMT14 English-German language
pair which even surpasses the previous state-of-the-art pre-
training aided NMT by 1.4 BLEU score. While for the large
WMT14 English-French task with 40 millions of sentence-
pairs, our base model still significantly improves upon the
state-of-the-art Transformer big model by more than 1 BLEU
score.

Introduction
Pre-trained text representations like ELMo (Peters et al.
2018), GPT-2 (Radford et al. 2019; 2018) and BERT (De-
vlin et al. 2018) have shown their superiors, which signif-
icantly boost the performances of various natural language
processing tasks, including classification, POS tagging, and
question answering. Empirically, on most downstream NLP
tasks, fine-tuning BERT parameters in training achieves bet-
ter results compared to using fixed BERT as features.

However, introducing BERT to neural machine transla-
tion (NMT) is non-trivial, directly using BERT in NMT
does not always yield promising results, especially for the
resource-rich setup. As in many other NLP tasks, we could
use BERT as the initialization of NMT encoder, or even
directly replace the word embedding layer of the encoder-
decoder framework with the BERT embeddings. This does
work in some resource-poor NMT scenarios but hardly gives
inspiring results in high resource NMT benchmarks such
as WMT14 English-French, which always have a large size
of parallel data for training. Furthermore, Edunov, Baevski,
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and Auli (2019) observe that using pre-trained model in
such a way leads to remarkable improvements without fine-
tuning, but give few gains in the setting of fine-tuning in
resource-poor scenario. While the gain diminishes when
more labeled data become available. This is not in line with
our expectation.

We argue that current approaches do not make the most
use of BERT in NMT. Ideally, fine-tuning BERT in NMT
should lead to adequate gain as in other NLP tasks. However,
compared to other tasks working well with direct BERT fine-
tuning, NMT has two distinct characteristics, the availabil-
ity of large training data (10 million or larger) and the high
capacity of baseline NMT models (i.e. Transformer). These
two characteristics require a huge number of updating steps
during training in order to fit the high-capacity model well
on massive data 1. Updating too much leads to the catas-
trophic forgetting problem (Goodfellow et al. 2013), namely
too much updating in training make the BERT forget its
universal knowledge from pre-training. The assumption lies
well with previous observations that fixed BERT improves
NMT a bit and fine-tuning BERT even offers no gains.

In this paper, we propose the concerted training approach
(CTNMT) to make the most use of BERT in NMT. Specif-
ically, we introduce three techniques to integrate the power
of pre-trained BERT and vanilla NMT, namely asymptotic
distillation, dynamic switch for knowledge fusion, and rate-
scheduled updating. First, an asymptotic distillation (AD)
technique is introduced to keep remind the NMT model of
BERT knowledge. The pre-trained BERT serves as a teacher
network while the encoder of the NMT model serves as a
student. The objective is to mimic the original teacher net-
work by minimizing the loss (typically L2 or cross-entropy
loss) between the student and the teacher in an asymptotic
way. The asymptotic distillation does not introduce addi-
tional parameters therefore it can be trained efficiently. Sec-
ondly, a dynamic switching gate (DS) is introduced to com-
bine the encoded embedding from BERT and the encoder
of NMT. Based on the source input sentence, it provides
an adaptive way to fuse the power of BERT and NMT’s
encoder-decoder network. The intuition is that for some

1For example, for the EN-DE translation task, it always takes
100 thousands of training steps, while a typical POS tagging model
needs several hundreds of steps.



source sentences BERT might produce a better encoded in-
formation than NMT’s encoder while it is opposite for other
sentences. Thirdly, we develop a scheduling policy to adjust
the learning rate during the training. Without such a tech-
nique, traditionally BERT and NMT are updated uniformly.
However, a separate and different updating pace for BERT
LM is beneficial for the final combined model. Our pro-
posed rate-scheduled learning effectively controls the sep-
arate paces of updating BERT and NMT networks accord-
ing to a policy. With all these techniques combined, CTNMT
empirically works effectively in machine translation tasks.

While both simple and accurate, Our experiments
in English-German, English-French, and English-Chinese
show gains of up to 2.9, 1.3 and 1.6 BLEU score respec-
tively. The results even surpass the previous state-of-the-art
pre-training aided NMT by +1.4 BLEU score on the WMT
English-German benchmark dataset. It is also worth men-
tioning that the improvements not comes from the additional
parameters, CTNMT significantly bypass a strong MultiCol
deep NMT model which is pretrained with the bilingual cor-
pus by 1.4 and 0.6 BLEU respectively(Chen et al. 2018).

The main contributions of our work can be summarized
as:

• We are the first to investigate the catastrophic forgetting
problem on the NMT context when incorporating large
language models;

• We propose CTNMT to alleviate the problem. CTNMT can
also be applied to other NLP tasks;

• We make the best practice to utilize the pre-trained model.
Our experiments on the large scale benchmark datasets
show significant improvement over the state-of-the-art
Transformer-big model.

The Proposed CTNMT
As can be seen in Figure 1, we will describe CTNMT to mod-
ify sequence to sequence learning to effectively utilize the
pre-trained LMs.

Background
Sequence modeling in machine translation has been largely
focused on supervised learning which generates a target sen-
tence word by word from left to right, denoted by pθ(Y |X),
where X = {x1, · · · , xm} and Y = {y1, · · · , yn} represent
the source and target sentences as sequences of words re-
spectively. θ is the set of parameters which is usually trained
to minimize the negative log-likelihood:

Lnmt = −
n∑
i=1

log pθ(yi|y<i, X). (1)

where m and n is the length of the source and the target
sequence respectively.

Specifically, the encoder is composed of L layers. The
first layer is the word embedding layer and each encoder
layer is calculated as:

hle = Encode(hl−1e ) (2)

Encoder(·) is the layer function which can be implemented
as RNN, CNN, or self-attention network. In this work, we
evaluate CTNMT on the standard Transformer model, while
it is generally applicable to other types of NMT architec-
tures.

The decoder is composed of L layers as well:

hld = Decoder(hLe , h
l−1
d ) (3)

which is calculated based on both the lower decoder layer
hl−1d and the top-most encoder layer hLe . The last layer of
the decoder hLd is used to generate the final output sequence.
Without the encoder, the decoder essentially acts as a lan-
guage model on y’s. Similarly, the encoder with an addi-
tional output layer also serves as a language model. Thus
it is natural to transfer the knowledge from the pre-trained
languages models to the encoder and decoder of NMT.

Without adjusting the actual language model parameters,
BERT and GPT-2 form the contextualized word embedding
based on language model representations. GPT-2 can be
viewed as a causal language modeling (CLM) task consist-
ing of a Transformer LM trained to fit the probability of a
word given previous words in a sentence, while BERT is
designed to pre-train deep bidirectional representations by
jointly conditioning on both left and right context in all lay-
ers. Specifically, from an input sentenceX = {x1 · · · , xm},
BERT or GPT-2 computes a set of feature vectors H lm =
{hlm1 · · · , hlmm } upon which we build our NMT model. In
general, there are two ways of using BERT features, namely
fine-tuning approach, and feature approach. For fine-tuning
approach, a simple classification layer is added to the pre-
trained model and all parameters are jointly fine-tuned on a
downstream task, while the feature approach keeps the pre-
trained parameters unchanged. For most cases, the perfor-
mance of the fine-tuning approach is better than that of the
feature approach.

In NMT scenario, the basic procedure is to pre-train both
the NMT encoder and decoder networks with language mod-
els, which can be trained on large amounts of unlabeled
text data. Then following a straightforward way to initial-
ize the NMT encoder with the pre-trained LM and fine-tune
with a labeled dataset. However, this procedure may lead
to catastrophic forgetting, where the model performance on
the language modeling tasks falls dramatically after fine-
tuning (Goodfellow et al. 2013). With the increasing train-
ing corpus, the benefits of the pre-training will be gradually
diminished after several iterations of the fine-tuning proce-
dure. This may hamper the model’s ability to utilize the pre-
trained knowledge. To tackle this issue, we propose three
complementary strategies for fine-tuning the model.

Asymptotic Distillation
Addressing the catastrophic forgetting problem, we propose
asymptotic distillation as the minic regularization to retain
the pre-trained information. Additionally, due to the large
number of parameters, BERT and GPT-2, for example, can-
not be deployed in resource-restricted systems such as mo-
bile devices. Fine-tuning with the large pre-trained model
slows NMT throughput during training by about 9.2x, as
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Figure 1: The overall CTNMT with asymptotic distillation and dynamic switch.

showed by (Edunov, Baevski, and Auli 2019). With asymp-
totic distillation, we can train the NMT model without addi-
tional parameters.

Specifically, the distillation objective is to penalize the
mean-squared-error (MSE) loss between the hidden states
of the NMT model and the pre-trained LM:

Lkd = −||ĥlm − hl||22 (4)

where the hidden state of the pre-trained language model
ĥlm is fixed and treated as the teacher; hl is the lth layer of
the hidden states of the NMT model. For the encoder part,
we use the last layer and find it is better to add the supervi-
sion signal to the top encoder layers.

At training time for NMT, the distilling objective can be
used in conjunction with a traditional cross-entropy loss:

L = α · Lnmt + (1− α) · Lkd (5)

where α is a hyper-parameter that balances the preference
between pre-training distillation and NMT objective.
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Asymptotic distillation provides an effective way to in-
tegrate the pre-trained information to NMT tasks. Features
extracted from a extremely large pre-trained LM such as

BERT, however, are not easy for the student Transformer
network to fit since these features can be high-ordered.
Meanwhile, directly feeding the features to the NMT model
ignores the information from the original text, which harms
the performance. We thus introduce a dynamic switch strat-
egy to incorporate the pre-trained model to the original
Transformer NMT model as showed in 2.

Inspired by the success of gated recurrent units in
RNN(Chung et al. 2014), we propose to use the similar idea
of gates to dynamically control the amount of information
flowing from the pre-trained model as well as the NMT
model and thus balance the knowledge transfer for our NMT
model.

Intuitively, the context gate looks at the input signals from
both the pre-trained model and the NMT model and outputs
a number between 0 and 1 for each element in the input vec-
tors, where 1 denotes “completely transferring this” while 0
denotes “completely ignoring this”. The corresponding in-
put signals are then processed with an element-wise mul-
tiplication before being fed to the next layer. Formally, a
context gate consists of a sigmoid neural network layer and
an element-wise multiplication operation which is computed
as:

g = σ(Whlm + Uhnmt + b) (6)

where σ(·) is the logistic sigmoid function, hlm is the hidden
state of the pre-trained language model, and hnmt is the hid-
den state of the original NMT. Then, we consider integrating
the NMT model and pre-trained language model as:

h = g � hlm + (1− g)� hnmt (7)

where � is an element-wise multiplication. If g is set to 0,
the network will degrade to the traditional NMT model; if
g is set to 1, the network will simply act as the fine-tuning
approach.

Rate-scheduled learning
We also propose a rate-scheduled learning strategy, as an
important complement, to alleviate the catastrophic forget-
ting problem. Instead of using the same learning rate for
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Figure 3: The slanted triangular learning rate schedule used
for ηlm.

all components of the model, rate-scheduled learning strat-
egy allows us to tune each component with different learn-
ing rates. Formally, the regular stochastic gradient descent
(SGD) update of a model’s parameters θ at time step t can
be summarized as the following formula:

θt = θt−1 − η∇θL(θ),
where η is the learning rate. For discriminative fine-tuning,
we group the parameters into {θlm, θnmt}, where θlm and
θnmt contain the parameters of the pre-trained language
model and the NMT model respectively. Similarly, we ob-
tain the corresponding learning rate {ηlm, ηnmt}.

The SGD update with drate-scheduled learning strategy is
then the following:

θlmt = θlmt−1 − ηlm∇θlmL(θlm) (8)

θnmtt = θnmtt−1 − ηnmt∇θnmtL(θnmt) (9)

We would like the model first to quickly converge the
NMT parameters. Then we jointly train both the NMT and
LM parameters with modest steps. Finally, we only re-
fine the NMT parameters to avoid forgetting the pre-trained
knowledge. Using the same learning rate or an annealed
learning rate throughout training is not the best way to
achieve this behavior. Inspired by (Howard and Ruder 2018;
Smith 2017), we employ slanted triangular learning rates
policy which first increases linearly and then decreases grad-
ually after a specified epoch, i.e., there is a “short increase”
and a “long decay”. More specifically, the learning rate of
pre-trained parameters ηlm is then defined as ηlm = ρ ·ηnmt
where,

ρ =


t/T ′ t ≤ T ′
1− t−T ′

T−T ′ T ′ ≤ t < T
0 t > T.

(10)

T ′ is the step after which we switch from increasing to de-
creasing the learning rate. T is the maximum fine-tuning
steps of θlm and t is the current training step. We set T ′ =
10000 and T = 20000 in our experiments. For NMT param-
eters θnmt, we generally follow the learning rate strategy
described in (Vaswani et al. 2017a).

Experiments Settings
Datasets
We mainly evaluate CTNMT on the widely used WMT
English-German translation task. In order to show the

usefulness of CTNMT, we also provide results on other
large-scale translation tasks: English-French, English-
Chinese. The evaluation metric is cased BLEU. We tok-
enized the reference and evaluated the performance with
multi-bleu.pl2. The metrics are exactly the same as
the previous work (Papineni et al. 2002). All the training
and testing datasets are public 3.

For English-German, to compare with the results reported
by previous work, we used the same subset of the WMT
2014 training corpus that contains 4.5M sentence pairs with
91M English words and 87M German words. The concate-
nation of news-test 2012 and news-test 2013 is used as the
validation set and news-test 2014 as the test set.

We also report the results of English-French. To compare
with the results reported by previous work on end-to-end
NMT, we used the same subset of the WMT 2014 training
corpus that contains 36M sentence pairs. The concatenation
of news-test 2012 and news-test 2013 serves as the valida-
tion set and news-test 2014 as the test set.

For English-Chinese, our training data consists of 2.2M
sentence pairs extracted from WMT 2018. We choose WMT
2017 dataset as our development set and WMT 2018 as our
test sets.

Training details
NMT The hyper-parameters setting resembles (Vaswani et
al. 2017a). Specifically, we reduce the vocabulary size of
both the source language and the target language to 50K
symbols using the sub-word technique (Bojanowski et al.
2017). During training, we employ label smoothing of value
ε = 0.1(Pereyra et al. 2017). For strategies using BERT fea-
tures, we apply the same pre-processing tool as BERT or
GPT-2 does to the source language corpus. We batch sen-
tence pairs by approximating length and limited input and
output tokens per batch to 8192 per GPU. We train our NMT
model with the sentences of length up to 150 words in the
training data. We train for 100, 000 steps on 8 V100 GPUs,
each of which results in training batch contained approxi-
mately 8192× 16 source and target tokens respectively. We
use a beam width of 8 and length penalty to 0.6 in all the
experiments. For our small model, the dimensions of all the
hidden states were set to 768 and for the big model, the di-
mensions were set to 1024.
Pre-trained LM For the pre-trained LMs, we apply the pub-
lic BERT and GPT-2 model to make the experiments repro-
ducible. BERT is a multi-layer, bidirectional transformer en-
coder that comes in two variants: BERTBASE and the larger
BERTLARGE. We choose BERTBASE as our default configu-
ration which comprises 12 layers, 768 hidden units, 12 self-
attention heads, and 110M parameters.

Similarly, OpenAI GPT-2(Radford et al. 2019; 2018) is a
generative pre-trained transformer (GPT) encoder fine-tuned
on downstream tasks. Unlike BERT, however, GPT-2 is uni-
directional and only makes use of the previous context at
each time step.

2https://github.com/moses-smt
3http://www.statmt.org/wmt14/translation-task.html



System Architecture En-De En-Fr En-Zh
Existing systems

Vaswani et al. (2017b) Transformer base 27.3 38.1 -
Vaswani et al. (2017b) Transformer big 28.4 41.0 -
Lample and Conneau (2019) Transformer big + Fine-tuning 27.7 - -
Lample and Conneau (2019) Transformer big + Frozen Feature 28.7 - -
Chen et al. (2018) RNMT+ + MultiCol 28.7 41.7 -

Our NMT systems
CTNMT Transformer (base) 27.2 41.0 37.3
CTNMT Rate-scheduling 29.7 41.6 38.4
CTNMT Dynamic Switch 29.4 41.4 38.6
CTNMT Asymptotic Distillation 29.2 41.6 38.3
CTNMT + ALL 30.1 42.3 38.9

Table 1: Case-sensitive BLEU scores on English-German, English-French and English-Chinese translation. The best perfor-
mance comes from the fusion of rate-scheduling, dynamic switch and asymptotic distillation.

Pre-trained LM for NMT Our experiments mainly con-
ducted on the encoder part of BERT. If not specified, we
choose the second-to-last hidden states of BERT to help the
training of NMT. For rate-scheduled learning in Eq. (10), T ′
is set to 10,000 and T is set to 20,000 and we found the per-
formance is rather robust to the hyper-parameters in our pre-
liminary experiments. For dynamic switch, we make a gate
combination of the second-to-last layer of BERT and the
word embedding layer of NMT. We also explored the fusion
with different NMT layer but achieved no sustained gains.
For asymptotic distillation, the balance coefficient α is set to
0.9 in Eq. (5). We compare our approach with MultiCol ap-
proach which pretrained the encoders with NMT model and
merges the outputs of a single combined representation. The
performance lags behind our best performance. And with
only Asymptotic Distillation we still outperform MultiCol
without additional parameters.

Results and Analysis
The results on English-German and English-French transla-
tion are presented in Table 1. We compare CTNMT with vari-
ous other systems including Transformer and previous state-
of-the-art pre-trained LM enhanced model. As observed by
Edunov, Baevski, and Auli (2019), Transformer big model
with fine-tuning approach even falls behind the baseline.
They then freeze the LM parameters during fine-tuning and
achieve a few gains over the strong transformer big model.
This is consistent with our intuition that fine-tuning on the
large dataset may lead to degradation of the performance. In
CTNMT, we first evaluate the effectiveness of the proposed
three strategies respectively. Clearly, these method achieves
almost 2 BLEU score improvement over the state-of-the-art
on the English-German task for the base network. In the case
of the larger English-French task, we obtain 1.2 BLEU im-
provement for the base model. In the case of the English-
Chinese task, we obtain 1.6 BLEU improvement for the
baseline model. More importantly, the combination of these
strategies finally gets an improvement over the best single
strategy with roughly 0.5 BLEU score. We will then give a
detailed analysis as followings.

Encoder v.s. Decoder

Models En→De BLEU

BERT Enc 29.2
BERT Dec 26.1
GPT-2 Enc 27.7
GPT-2 Dec 27.4

Table 2: Ablation of asymptotic distillation on the encoder
and the decoder of NMT.

As shown in Table 2, pre-trained language model rep-
resentations are most effective when supervised on the
encoder part but less effective on the decoder part. As
BERT contains bidirectional information, pre-training de-
coder may lead inconsistencies between the training and the
inference. The GPT-2 Transformer uses constrained self-
attention where every token can only attend to context to
its left, thus it is natural to introduce GPT-2 to the NMT
decoder. While there are still no more significant gains ob-
tained in our experiments. One possible reason is that the
decoder is not a typical language model, which contains the
information from source attention. We will leave this issue
in the future study.

BERT v.s. GPT-2
We compare BERT with GPT-2(Radford et al. 2019; 2018)
on WMT 2014 English-German corpus. As shown in Ta-
ble 2, BERT added encoder works better than GPT-2. The
experiments suggest that bidirectional information plays an
important role in the encoder of NMT models. While for the
decoder part, GPT-2 is a more priority choice. In the follow-
ing part, we choose BERT as the pre-trained LM and apply
only for the encoder part.

About asymptotic distillation
We conduct experiments on the performance of asymptotic
distillation model on different amounts of training data. The
results are listed in table 3. The experiments is in line



Transformer Fine-tuning AD
900K 16.6 19.8 20.2

1,800K 22.5 24.6 25.1
2,700K 24.5 25.2 26.9
3,600K 26.2 26.8 28.4
4,500K 27.2 27.8 29.2

Table 3: Ablation of using different data size with asymp-
totic distillation.

with our intuition that with the increasing training data,
the gains of fine-tuning will gradually diminish. While with
the asymptotic distillation, we achieve continuous improve-
ments.

About dynamic switch

Models En→De BLEU

Transformer 27.2
Encoder w/o BERT init -
BERT Feature w/o Encoder 25.2
BERT + Encoder 28.5
BERT @ Encoder 29.4

Table 4: Results on WMT14 English-German with different
feeding strategies. ‘+’ indicates average pooling and ‘@’ in-
dicates dynamic switch.

We then compare different ways to combine the embed-
ding vector and the BERT features which will be fed into
the Transformer encoder. In Table 4, we first conduct ex-
periments with 24 layer encoder without BERT pre-training
to figure out if the improvements comes from the additional
parameters. The model cannot get meaningful results due to
gradient vanish problem. This also suggests that good ini-
tialization help to train the deep model. In the third row, we
replace the NMT encoder with BERT and keep the BERT
parameters frozen during fine-tuning, the performance lags
behind the baseline, which indicates the importance of the
original NMT encoder. According to the above experimen-
tal results, we combine both the BERT and NMT encoder. In
the fourth row, the average pooling method obtains a gain of
1.3 BLEU score over the baseline model showing the power
of combination. Finally, the dynamic switch strategy keep
the balance between BERT and NMT and achieve a sub-
stantial improvement of 0.9 BLEU score over the average
pooling approach.

About rate-scheduled learning
In Table 5, we evaluate the fine-tuning based strategies
on WMT 2014 English-German corpus. For ηlm = 1, the
model draws back to the traditional fine-tuning approach,
while for ηlm = 0, the model is exactly the feature-based ap-
proach. We mainly compare two settings for rate-scheduled
learning models: 1) we fix ηlm = 0.01, a small constant up-
date weight; 2) we follow slanted triangular learning rates
policy in Eq.(10) to dynamically apply the ηlm to the SGD

Models En→De BLEU

ηlm = 1 27.7
ηlm = 0.01 29.0
ηlm = ρηnmt 29.7
ηlm = 0 28.4

Table 5: Results on WMT14 English-German with rate-
scheduled learning. ηlm = 1 indicates the fine-tuning ap-
proach and ηlm = 0 indicates the frozen feature-based ap-
proach.

update. The results show that slanted triangular learning
rates policy is a more promising strategy for fine-tuning
models. We find that changing ηlm during the training phase
provides better results than fixed values with a similar or
even smaller number of epochs. The conclusion is in line
with (Smith 2017).

About BERT layers

Models En→De BLEU

Last Hidden 28.4
Second-to-Last Hidden 29.2
Third-to-Last Hidden 29.2
Fourth-to-Last Hidden 29.2

Table 6: Results on WMT14 English-German with different
layers of BERT.

We implement asymptotic distilling by applying auxiliary
L2 loss between a specific NMT encoder layer and a spe-
cific BERT layer. In our experiments, we add the supervi-
sion signal to the 3th encoder layer. In Table 6, it is inter-
esting to find that the second-to-last layer of BERT works
significantly better than the last hidden state. Intuitively, the
last layer of the pre-trained LM model is impacted by the
LM target-related objective (i.e. masked language model and
next sentence prediction) during pre-training and hence the
last layer is biased to the LM targets.

Related work
Unsupervised pre-training of LMs
Unsupervised pre-training or transfer learning has been ap-
plied in a variety of areas where researchers identified
synergistic relationships between independently collected
datasets. Dahl et al. (2012) is the pioneering work that found
pre-training with deep belief networks improved feedfor-
ward acoustic models. Natural language processing lever-
ages representations learned from unsupervised word em-
bedding (Mikolov et al. 2013; Pennington, Socher, and Man-
ning 2014) to improve performance on supervised tasks,
such as named entity recognition, POS tagging semantic
role labelling, classification, and sentiment analysis (Col-
lobert et al. 2011; Socher et al. 2013; Wang and Zheng 2015;
Tan et al. 2018). The word embedding approaches have been



generalized to coarser granularities as well, such as sentence
embedding (Kiros et al. 2015; Le and Mikolov 2014).

Recently, Peters et al. (2018) introduced ELMo, an ap-
proach for learning universal, deep contextualized represen-
tations using bidirectional language models. They achieved
large improvements on six different NLP tasks. A recent
trend in transfer learning from language models (LMs) is
to pre-train an LM model on an LM objective and then
fine-tune on the supervised downstream task. OpenAI GPT-
2 (Radford et al. 2019; 2018) achieved remarkable results
in many sentence level tasks from the GLUE benchmark.
Devlin et al. (2018) introduce pre-trained BERT representa-
tions which can be fine-tuned with just one additional output
layer, achieving the state-of-the-art performance. Our work
builds on top of the pre-training of LMs. To make the work
reproducible, we choose the public BERT4 and GPT-25 as
the strong baseline.

Pre-training for NMT

A prominent line of work is to transfer the knowledge from
resource-rich tasks to the target resource-poor task. Qi et
al. (2018) investigates the pre-trained word embedding for
NMT model and shows desirable performance on resource-
poor languages or domains. Ramachandran, Liu, and Le
(2017) presents a general unsupervised learning method to
improve the accuracy of sequence to sequence (seq2seq)
models. In their method, the weights of the encoder and
the decoder of a seq2seq model are initialized with the pre-
trained weights of two LMs and then fine-tuned with the par-
allel corpus.

There have also been works on using data from multi-
ple language pairs in NMT to improve performance. Gu et
al.; Zoph et al. (2018; 2016) showed that sharing a source
encoder for one language helps performance when using
different target decoders for different languages. They then
fine-tuned the shared parameters to show improvements in a
poorer resource setting.

Perhaps most closely related to our method is the work
by Lample and Conneau; Edunov, Baevski, and Auli (2019;
2019) who feeds the last layer of ELMo or BERT to the
encoder of NMT model. While following the same spirit,
there are a few key differences between our work and theirs.
One is that we are the first to leverage ssymptotic dis-
tillation to transfer the pre-training information to NMT
model and empirically prove its effectiveness on truly large
amounts of training data (e.g. tens of millions). Additionally,
the aforementioned previous works directly feed the LM to
NMT encoder, ignoring the benefit of the traditional NMT
encoder features. We extend this approach with dynamic
switch and rate-scheduled learning strategy to overcome the
catastrophic forgetting problem. we finally incorporate the
three strategies and find they can complement each other and
achieve the state-of-the-art on the benchmark WMT dataset.

4https://github.com/google-research/bert
5https://github.com/openai/gpt-2/

Conclusion
We propose CTNMT, an effective, simple, and efficient
transfer learning method for neural machine translation that
can be also applied to other NLP tasks. Our conclusions
have practical effects on the recommendations for how to
effectively integrate pre-trained models in NMT: 1) Adding
pre-trained LMs to the encoder is more effective than
the decoder network. 2) Employing CTNMT addresses the
catastrophic forgetting problem suffered by pre-training for
NMT. 3) Pre-training distillation is a good choice with nice
performance for computational resource constrained scenar-
ios. While the empirical results are strong, CTNMT sur-
passes those previous pre-training approaches by 1.4 BLEU
score on the WMT English-German benchmark dataset. On
the other two large datasets, our method still achieves re-
markable performance.
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